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Abstract Diving physiology and at-sea behavior of a
juvenile leopard seal (Hydrurga leptonyx) were oppor-
tunistically measured in the Antarctic Peninsula during
winter 2002. Total body oxygen stores were estimated
from measures of hematocrit, hemoglobin, myoglobin,
and total blood volume and were used to calculate an
aerobic dive limit (ADL). Movement patterns and div-
ing behavior were measured by equipping the seal with a
Satellite Relay Data Logger that transmitted data from
8–31 August 2002. The seal remained in a focal area, in
contrast to crabeater seals tracked simultaneously. The
seal displayed short, shallow dives (mean 2.0±1.4 min,
44±48 m) and spent 99.9% of its time within the esti-
mated ADL of 7.4 min. The shallow diving behavior
contradicts previous diet research suggesting Antarctic
krill (Euphausia superba) is the primary prey of leopard
seals during the winter months as krill were found at
deeper depths during this period. These measurements
of diving and movement of a leopard seal provide
valuable preliminary data necessary to develop future
research on the at-sea behavior of an apex predator in
the Antarctic ecosystem.

Introduction

Pack ice seals of the Antarctic (crabeater [ Lobodon
carcinophaga], Ross [ Ommatophoca rossii], and leopard
seals [ Hydrurga leptonyx]) comprise over 50% of the
world’s pinniped population (Laws 1984). Yet because
of their distribution in the heavy pack ice and the harsh
environment of the Antarctic, access to these animals
can be limited and research at times can be impossible.
Winter access to this region is even more problematic
and consequently little is known about the wintertime
movement and behavior of many Antarctic species.

The ecology of leopard seals is of significant impor-
tance to our understanding of the Antarctic ecosystem
because they are apex predators that regularly feed on
organisms from multiple trophic levels including krill,
fish, penguins, and other seals (Hofmann et al. 1977;
Lowry et al. 1988). During winter months, adult leopard
seals are thought to prey primarily on Antarctic krill
(Euphausia superba), an abundant resource also con-
sumed by crabeater seals and Adèlie penguins (Pygoscelis
adeliae) (Green and Williams 1986; Lowry et al. 1988;
Walker et al. 1998). Other than diet analysis and re-
stricted observational studies (Hofmann et al. 1977;
Green and Williams 1986; Lowry et al. 1988; Walker
et al. 1998) almost nothing has been published about the
physiology and/or diving behavior of free-ranging leop-
ard seals. This study examined the physiology, diving
behavior, and movement pattern of a leopard seal during
the austral winter of 2002, off the Antarctic Peninsula.

Materials and methods

As part of a research program (Southern Ocean GLO-
BEC) to study the foraging ecology of crabeater seals,
we opportunistically studied the behavior and physiol-
ogy of one juvenile male leopard seal in August 2002.
The seal was captured on the pack ice north of Adelaide
Island (66 51.6�S, 66� 24.3W), along the Western Ant-
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arctic Peninsula (Fig. 1a). The seal was initially sedated
with 200 mg Telazol (Fort Dodge, USA) injected
intramuscularly using a pole syringe. The seal was then
physically restrained with a net for anesthetic induction
with isoflurane via a mask using a field portable gas
anesthesia machine.

The seal was weighed in a sling, using a hand winch
and scale (Ohaus I-20W, capacity 1,100±0.5 kg). Body
composition was determined using the truncated cones
method by measuring blubber depth with a portable
ultrasound scanner (Scanoprobe II, USA) and taking
length and girth measurements following methods

described elsewhere (Gales and Burton 1987; Worthy
et al. 1992).

Total blood volume was calculated from measures of
hematocrit (Hct) and plasma volume (Pv, ml). Plasma
volume was determined using Evan’s blue dye injected
intravenously following standard methods (El-Sayed
et al. 1995; Costa et al. 1998). Total blood volume (Bv,
ml) was then calculated as: Bv=Pv/[100·(1 � Hct)].
Hemoglobin concentration was measured colorimetri-
cally at 540 nm using a spectrophotometer after adding
10 ll of whole blood to 2.5 ml of Drabkin’s reagent
(SigmaChemicals kit 625A). To determinemuscle oxygen
stores, a sample of tissue was obtained from the latissimus
dorsi muscle by making a 1 cm incision, then using a
biopsy needle. Muscle myoglobin concentrations were
measured according to methods described by Reynafarje
(1963). Finally, results from the above assays were used to
calculate total body oxygen stores to predict the aerobic
capacity of the seal while diving (aerobic dive limit, ADL)

Fig. 1 a Region of the Antarctic Peninsula where research was
conducted (denoted by black square). b Argos locations from the
juvenile leopard seal from 8 August–31 August 2002. c Argos
locations from two representative crabeater seals (light gray squares
and dark gray circles). Note all four crabeater seals tracked traveled
over a more extensive area despite similar tagging location and
tracking duration (24 days)
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following equations published in Kooyman and Sinnet
(1982) and Ponganis et al. (1993).

Diving behavior and movement patterns were
examined by equipping the seal with a Satellite Relay
Data Logger (SRDL; Sea Mammal Research Unit, St.
Andrews Scotland). The instrument was glued to the
head with fast setting epoxy (Devcon 5 min.). The
SRDL collected and summarized data on the animal’s
behavior and transmitted this information via the AR-
GOS satellite system (Fancy et al. 1988). The SRDL
sampled depth, temperature, condition (wet/dry), and
swim speed at 4 sec intervals and provided locations for
all satellite uplinks. The SRDL summarized behavior
into three mutually exclusive categories: diving, hauled
out, or cruising. Diving was identified when the tag was
at depths below 6 m for more than 8 s. Haul outs were
classified as periods when the animal was out of the
water for more than 10 min. Cruising was identified
when the animal was in the water and no dives occurred.
The transmitted data included summary information
(time spent in each behavior during 4 h intervals) as well
as detailed dive information for all dives (depth, dura-
tion, and an index of dive shape). Further details on tag
programming and tag descriptions are available in Fe-
dak et al. 2001, 2002 and Burns et al. 2004.

Dive data were filtered to remove erroneous readings
using descent and ascent rates as described in Burns
et al. 2004. Satellite locations were filtered using a
maximum travel speed of greater than 4.0 m s�1

(McConnell et al. 1992), and location data were ana-
lyzed using ArcView GIS 3.2, Animal Movement Pro-
gram 2.04 and Spatial Analyst 2.0. Minimum convex
polygon (MCP) analysis was conducted using all
remaining Argos locations to calculate the area used by
the leopard seal. For comparison of movement patterns,
MCP analysis was also performed on data from four
crabeater seals previously summarized in Burns et al.
2004. The crabeater seals were tagged in the same
location as the leopard seal (5–7 August 2002) and were
tracked for the same number of days. This comparison
provided the opportunity to evaluate the simultaneous
movements of two species, thought to forage on the
same prey resources. For the first time, we were able to
obtain a glimpse of how these species may reduce
interspecific competition.

Summary data for movement, diving, haul out, and
cruising patterns are reported as mean ± SD. To com-
pare day and night dive depths, data were log10-trans-
formed to normalize the data and ensure equal
variances. A two-sample t-test was used to compare
groups and data were considered significantly different
at P<0.05 (SYSTAT 10, SPSS Inc., USA).

Results and discussion

The mass of the seal was 197.5 kg, axillary girth 143 cm,
and standard length 227 cm. Based on length, this
individual was classified as a yearling (Hamilton 1939).

Body composition of the seal was 29.7% adipose tissue
and 70.3% lean tissue. The plasma volume was 15.0 l,
and total blood volume 25.9 l or 13.1% of the seal’s
mass. Hemoglobin, hematocrit, and myoglobin concen-
trations were 14.7 g 100 ml�1 blood, 42%, and 5.1 g
100 g�1 muscle, respectively. Total blood oxygen stores
were 21.4 ml O2 kg

�1. Assuming a muscle mass of 35%
(Ponganis et al. 1993), we estimated muscle oxygen
stores to be 23.9 ml O2 kg

�1.
Lung oxygen stores were estimated from allometric

equations of Gentry and Kooyman (1986), assuming a
diving lung volume of 50% (Kooyman et al. 1971).
Davis and Kanatous (1999) suggest for Weddell seals
that spend much of their time below 50 m, lung oxygen
stores are not available. However, based on the diving
performance of this leopard seal, lung oxygen stores
may be a valuable oxygen reserve during diving and
were included in the calculations of total body oxygen
stores. Therefore, using the sum of blood, muscle, and
lung oxygen stores, we calculated mass specific total
body oxygen to be 51.4 ml O2 kg

�1. Assuming a con-
servative metabolic rate of 1.19 l O2 min�1 (two times
Kleiber and Kooyman 1989) and using total available
oxygen stores, the calculated ADL of the seal was
7.4 min (Ponganis et al. 1993; Davis and Kanatous
1999).

In comparison with other juvenile phocids, the leop-
ard seal’s mass specific blood oxygen stores were low,
resulting in lower total body oxygen stores relative to
body size. When comparing specifically blood oxygen
stores, the leopard seal had half the oxygen storage
capacity of 8 to 10 month northern elephant seals
(Mirounga angustirostris, 42.8 ml O2 kg

�1, Thorson and
LeBoeuf 1994) and yearling gray seals (Halichoerus
grypus, 45.3 ml O2 kg

�1, Noren et al. 2005). However,
when comparing mass specific body oxygen stores to
other juvenile phocids, the differences are less dramatic.
Yearling Weddell seals (Leptonychotes weddellii) have
mass specific body oxygen stores of 55 ml O2 kg

�1, and
8-month old northern elephant seals have 68.8 ml
O2 kg

�1 (Burns and Castellini 1996; Thorson and LeB-
oeuf 1994, respectively). This suggests that the physio-
logical performance of diving leopard seals is inferior to
other phocids. This was previously suggested based on
hematocrit, hemoglobin, heart rate, and respiratory rate
data collected on captive leopard seals (Williams and
Bryden 1993).

The SRDL reported data for a total of 24 days (8 – 31
August 2002). During this period, 428 locations were
acquired. Over 74% of the locations were associated
with an estimated error of 1 km or less (Service Argos
1996). Mean ground speed for the leopard seal, calcu-
lated as the travel speed between two consecutive Argos
locations while the animal was in water, was 0.82 m s�1

with 75% of travel speeds between 0 and 1.0 m s�1.
The satellite track from the juvenile leopard seal

showed the animal moved within a smaller focal area
during the 24 days of tracking than did the four
crabeater seals tagged at the same time. The seal traveled
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a total distance of 458 km and remained within an area
of 664 km2 (Fig. 1b), whereas the crabeater seals tracked
from the same location traveled more extensively with
distances ranging from 788 to 971 km within total areas
between 1,213 and 5,105 km2 (Fig. 1c). The maximum
distance traveled by the leopard seal from the tagging
location was only 40.3 km which was within the range of
the maximum distances traveled by adult leopard seals
reported by Rogers et al. 2005 in Prydz Bay. Although
adult leopard seals remained sedentary during winter
months, they did use a larger area than this juvenile
traveling on an average 137 km from tagging location
(Rogers et al. 2005).

This seal was captured and tracked in the Crystal
Sound region, an area of high abundance of zooplank-
ton, penguins, and seals, all potential prey of the leopard
seal (Lawson et al. 2004; Zhou and Dorland 2004).
During the winter months this area is also known to be
covered in dense pack ice (Perovich et al. 2004). Al-
though we encountered extensive ice cover during the
tagging period, we are confident the leopard seal was not
constrained by the physical properties of the environ-
ment (ice cover) because the crabeater seals moved over
a much wider area. The localized movements of this
animal, similar to adults measured in Prydz Bay,
potentially reflect directed foraging behavior in an area
of abundant prey resources. We suggest this disparity in
movement patterns between species indicate fundamen-
tal differences in how crabeater and leopard seals utilize
the marine environment, and this difference warrants
further investigation.

The leopard seal spent the majority of time hauled
out (58.9%±44.2), followed by cruising (27.3%±30.6),
and diving (13.7%±20.0). The majority of dives were
shallow (63% less than 50 m) with only 13% exceeding

100 m, and 2% deeper than 150 m (maximum 424.5 m).
Mean dive duration was also short (2.0±1.4 min) yet
the maximum dive duration was 9.35 min (Table 1).
Based on the estimated ADL, the aerobic capabilities
closely match the recorded diving behavior, as nearly all
dives (99.9%) were shorter than the estimated ADL.

Both dive frequency and maximum dive depth for the
leopard seal varied with the time of day (Fig. 2). The
highest frequency of dives occurred during nighttime
hours (as determined by local civil twilight) and peak
activity occurred within the 4 h prior to sunrise (35% of
dives between 0800 and 1200 GMT, Local time =
GMT—3 h). In addition, mean dive depth was signifi-
cantly deeper during daytime hours than during night-
time hours (day 59.6 ± 65.5 m, night 40.6 ± 42.7 m,
P=0.003).

The measured diving behavior reflected a diel pattern,
which is indicative of foraging on vertically migrating
prey. Previous studies suggest that krill, a vertically
migrating species, is an important component of leopard
seal’s diet during the winter months (Lowry et al. 1988).
However, research conducted during the Southern

Table 1 Summary of diving and movement data recorded for
24 days in August 2002. Diving was identified when the animal was
at depths below 6 m. Haul outs were classified as periods when the
animal was out of the water for greater than 10 min. Cruising was
identified when the animal was in the water, but no dives occurred

N Mean (SD) Median Range

Max dive depth (m) 1014 44 (48.0) 18 6–424.5
Dive duration (s) 1014 119 (82.6) 111 12–561
Surface travel (m/s) 160 0.82 (0.72) 0.59 0.01–3.44
Haul out periods (h) 14 13.7 (9.9) 13.2 0.3–28.6
Cruise time (min) 98 18.7 (18.1) 11 2–80

Fig. 2 Distribution of dive
frequency and mean maximum
dive depths during 2-h periods
over the 24 day tracking period
(Local time=GMT—3 h). The
broken horizontal bar represents
hours of local daylight. Note
the largest number of dives
occurred prior to sunrise and
the deepest dives occurred
during daylight hours
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Ocean GLOBEC winter cruises in this area found large
krill were absent from surface waters and were often
associated with the bottom (Ashjian et al. 2004; Lawson
et al. 2004). This suggests the leopard seal was not for-
aging primarily on krill because few dives were deeper
than 100 m, in an area where bottom depths can exceed
400 m. Further research on the winter diet of leopard
seals in the pack ice or juvenile seals may be able to
resolve this inconsistency.

Although this research was based on a single juvenile
individual, it sheds much needed light on the physiology,
behavior, and movements of leopard seals. We believe
these data can be useful to develop future avenues of
research that investigate the behavior of leopard seals
and are essential to understand the impact of this apex
predator on the Antarctic environment.
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